

ColdSpring Framework 1.0 Documentation
Dave Ross
Chris Scott

Kurt Wiersma
Sean Corfield

Simeon Bateman

iii

Table Of Contents
I. Introduction To ColdSpring ... 1
II. BeanFactory Reference... 5

II.I Installing ColdSpring and creating the BeanFactory ... 5
II.II Supplying the BeanFactory with your bean definitions... 5
II.III <bean/> tag attributes ... 6
II.IV The <bean/> tag's children ... 8
II.V Children of <constructor-arg/> and <property/> ... 9
II.VI Autowiring ... 10
II.VII Using Your Own Factories ... 11
II.VIII Hierarchical Bean Factories.. 13

IV. Aspect Oriented Programming w/ ColdSpring.. 15
IV.I. Introduction ... 15
IV.II. Concepts.. 15
IV.III. Advice Types .. 16

IV.III.I BeforeAdvice.. 17
IV.III.II AfterReturningAdvice .. 20
IV.III.III AroundAdvice aka MethodInterceptor .. 24
IV.III.IV ThrowsAdvice .. 28

III. Developing w/ ColdSpring .. 35
III.I Service Layers and ColdSpring.. 35
III.II ColdSpring and MVC frameworks ... 38
III.III ColdSpring and Remoting .. 40

III.III.I Remote Facades .. 40
III.III.II Using AOP to create remote proxies ... 41
III.III.III Automatic CFC to ActionScript object conversion .. 43

1

I. Introduction To ColdSpring
ColdSpring is a inversion-of-control framework/container for CFCs (ColdFusion Components). Inversion of Control, or IoC, is
synonymous with Dependency Injection, or DI. Dependency Injection is an easier term to understand because it's a more accurate
description of what ColdSpring does. ColdSpring borrows its XML syntax from the java-based Spring Framework, but ColdSpring
is not necessarily a "port" of Spring.

A dependency is when one piece of a program depends on another to get its job done. We'll use the example of a simple CFC
designed to manage your user's shopping carts on an online store. The requirements dictate that it needs to calculate tax on order
totals. You could build this functionality directly into your ShoppingCartManager, but it might be a better idea to create a
TaxCalculator CFC to do this particular job. You might need tax calculation somewhere else in your program, outside of your
shopping cart manager, and like most software developers, you want your code to be as reusable as possible. A TaxCalculator,
which does nothing but calculate tax, is an example of highly cohesive (and thus highly reusable) code. However, you may have
noticed in past projects that as the more cohesive things get, the more work there is in "keeping things together" (referred to as
"coupling"). Along with greater cohesion, loosening the amount of coupling in your code is another hallmark of software
development.

Every time a piece of your code instantiates and uses your tax calculator, two pieces of your application are effectively tied
together (and thus they are known as "collaborators"). Collaboration is natural and understandable in an application, but you still
want to do everything possible to keep coupling to a minimum. Your components need to know how to *use* the TaxCalculator,
but should the knowledge of how to create and configure the TaxCalculator be sprinkled into each and every one? ColdSpring
enables to you to remove those bits of code by directly managing your component's dependencies, but surprisingly your code
won't have any idea that it's there. This means that your components don't have to create or find their collaborators, they are
simply *given* them by ColdSpring! This act of giving is known as "injection", which is why "Dependency Injection" is a term that
accurately describes what ColdSpring does.

Before, your ShoppingCartManager would just create its own TaxCalculator with a createObject() call. With ColdSpring, the
ShoppingCartManager is instead injected with an instance of the TaxCalculator (also referred to as an "object reference"). In order
for the ColdSpring to be able to do this, you will need one of two things:

1. A "setter" method that will accept the TaxCalculator instance (a method named setTaxCalculator).
or

ColdSpring Framework 1.0 Documentation

2

2. An argument to the ShoppingCartManager constructor that will accept the TaxCalculator instance.

Here's a before/after example of what your ShoppingCartManager constructor might look like:

Before ColdSpring:
<cffunction name="init" returntype="myApp.model.ShoppingCartManager" output="false" hint="constructor">

<cfargument name="MaxItems" type="numeric" required="true" hint="max items for any of my user's carts"/>
<cfset variables.TaxCalculator = createObject("component","myApp.model.TaxCalculator").init()/>
<cfset variables.MaxItems = arguments.MaxItems/>

</cffunction>

After ColdSpring:
<cffunction name="init" returntype="myApp.components.ShoppingCartManager" output="false" hint="constructor">

<cfargument name="TaxCalculator" type="myApp.model.TaxCalculator" required="true" hint="Dependency
TaxCalculator"/>
<cfargument name="MaxItems" type="numeric" required="true" hint="max items for any user's cart"/>
<cfset variables.TaxCalculator = arguments.TaxCalculator/>
<cfset variables.MaxItems = arguments.MaxItems/>

</cffunction>

Ok, so this doesn't *look* like any less code, nor does it look any cleaner. Maybe some added complexity will start to reveal the
differences. Let's say our TaxCalculator needs to be told the current tax rate in order to function properly. Without ColdSpring, our
constructor changes to:
<cffunction name="init" returntype="myApp.model.ShoppingCartManager" output="false" hint="constructor">

<cfargument name="TaxRate" type="numeric" required="true" hint="Current Tax Rate"/>
<cfargument name="MaxItems" type="numeric" required="true" hint="max items for any user's cart"/>
<cfset variables.TaxCalculator =
createObject("component","myApp.components.TaxCalculator").init(arguments.TaxRate)/>
<cfset variables.MaxItems = arguments.MaxItems/>

</cffunction>

Does the "After ColdSpring" version of the constructor change? It doesn't! In fact, you might have noticed that the
ShoppingCartManager is now receiving a tax rate (and passing it to the TaxCalculator), which to me is outside the scope of what
the ShoppingCartManager is meant to do. In the ColdSpring example, the TaxCalculator comes in ready-to-use, and the
ShoppingCartManager is not burdened with creating and configuring it.

So, what is better about the ColdSpring/dependency-injection approach?

• components aren't asked to do things outside of their scope or duty (known as "separation of concerns")
• components aren't completely tied to other implementations (again, less coupling)
• components are easier to configure and you can do so without changing code

Introduction

3

• components become easier to test (we can dictate which collaborators they use, perhaps even creating dummy "stub" or
"mock" objects to trick the component into thinking that it's running in a different environment).

• you can get a birds eye view of the dependencies among your components (and generate some neat documentation)
• components are not tied to ColdSpring at all. There should be very little plumbing required to use ColdSpring in any

environment, and only "calling" code will be aware of its existence. In Model-View-Controller apps, this usually means that
the Controller will have some knowledge of ColdSpring but nothing else will.

To use ColdSpring with your components, you simple create a configuration file (or files) that contain some simple xml tags which
tell ColdSpring about your components (and their dependencies/configuration).

Take a look at the following xml snippet:
<bean id="ShoppingCartManager" class="myApp.model.ShoppingCartManager"/>
A ColdSpring "bean" tag is how you define your component(s), but don't read too much into the nomenclature. ColdSpring uses
the <bean/> syntax because it relies heavily on the "Java-beans" specification to resolve your component's dependencies. All the
above xml snippet says is "hey, ColdSpring… register myApp.components.ShoppingCartManager under the name
"ShoppingCartManager". Doing so means at any time, you can ask ColdSpring to give you the "ShoppingCartManager" and it will
return a myApp.components.ShoppingCartManager instance. Typically this instance is usually shared among all that ask (aka a
"singleton"), however you can define your bean such that each time your code asks for ColdSpring form the component it will
receive a new instance.

Most bean definitions will probably be a bit more complex, e.g. you might have some configuration details to pass to the
ShoppingCartManager … perhaps into the constructor (your CFC's init() method), as shown in this <bean/> snippet:
<bean id="ShoppingCartManager" class="myApp.model.ShoppingCartManager">

<constructor-arg name="MaxItems">
<value>15</value>

</constructor-arg>
</bean>

or as a property (e.g., a setterMethod – you would need to have a setMaxItems(items) method in your ShoppingCartManager for
the following to work):
<bean id="ShoppingCartManager" class="myApp.components.ShoppingCartManager">

<property name="MaxItems">
<value>15</value>

</property>
</bean>

ColdSpring Framework 1.0 Documentation

4

Ok, let's look back at our problem… we need to "inject" a TaxCalculator into our ShoppingCartManager. This is simpler than you
think – we have to define the TaxCalculator (and we'll supply it with the current tax rate):
<bean id="TaxCalculator" class="myApp.components.TaxCalculator">

<constructor-arg name="TaxRate">
<value>0.8</value>

</constructor-arg>
</bean>

Then, in our ShoppingCartManager bean definition, we can reference the TaxCalculator by using the <ref/> tag:
<bean id="ShoppingCartManager" class="myApp.components.ShoppingCartManager">

<constructor-arg name="MaxItems">
<value>15</value>

</constructor-arg>
<constructor-arg name="TaxCalculator">

<ref bean=TaxCalculator/>
</constructor-arg>

</bean>

Now, when ColdSpring creates the ShoppingCartManager, it will pass in (inject) the TaxCalculator instance. The
ShoppingCartManager has no idea where the TaxCalculator came from but it is perfectly happy to use it. You've now removed
unnecessary code from the ShoppingCartManager, and loosened its coupling to the TaxCalculator, effectively making your code
more reusable, testable, and maintainable.

5

II. BeanFactory Reference
Think of a ColdSpring BeanFactory as the container, or holder, for your application's components. It will instantiate, configure, and
resolve the dependencies among the components (beans) you place inside it. ColdSpring is currently shipping with only one
implementation of a BeanFactory. It's very possible that there will be others in the future, but the current implementation,
coldspring.beans.DefaultXmlBeanFactory will be the one demonstrated primarily in this reference.

II.I Installing ColdSpring and creating the BeanFactory
To install ColdSpring, you must either place the source within your ColdFusion server's webroot, or create a ColdFusion mapping
within the ColdFusion administrator named /coldspring that points to the location of the ColdSpring source code. To create a
ColdSpring BeanFactory, you would simply use the createObject method in CFML. However, you may want to prepare two
structures beforehand to pass in as arguments to the BeanFactory's constructor.

1. "defaultProperties"
Currently, this is a simple way to pass in a struct of actual configuration data into the BeanFactory and then use a syntax
like ${key} in place of using an actual value within the <bean/> definitions. Eventually this will be expanded/refactored into
entire CFML expression support.

2. "defaultAttributes"
A ColdSpring BeanFactory has the notion of bean attribute "defaults". This means that, for a given instance of
DefaultXmlBeanFactory, you can configure default behavior that will be applied to all beans that don't explicitly override
what you've set.

Both structures can be ignored and the BeanFactory will use its own internal defaults. An example of creating the BeanFactory
follows:

<cfset myBeanFactory = createObject("component","coldspring.beans.DefaultXmlBeanFactory").init()/>

You should be able to run the above line of code without error if ColdSpring is installed correctly on your server.

II.II Supplying the BeanFactory with your bean definitions

ColdSpring Framework 1.0 Documentation

6

The DefaultXmlBeanFactory implementation can only read bean definitions from xml. There is no way to programmatically add
bean definitions to this implementation (however one could construct the necessary xml on the fly and give that to the
DefaultXmlBeanFactory - as shown below).

Currently, there are 3 ways to add bean definitions to the DefaultXmlBeanFactory:

1. Pass the DefaultXmlBeanFactory a fully qualified path to a bean definition xml file.
<!--- void loadBeansFromXmlFile(string beanDefinitionFile, boolean ConstructNonLazyBeans)
--->
<cfset myBeanFactory = createObject("component","coldspring.beans.DefaultXmlBeanFactory").init()/>
<cfset myBeanFactory.loadBeansFromXmlFile("/path/to/file.xml",true)/>

2. Pass the DefaultXmlBeanFactory a string containing raw unparsed xml.
<!--- void loadBeansFromXmlRaw(string beanDefinitionXml, boolean ConstructNonLazyBeans) --
->
<cfset myBeanFactory = createObject("component","coldspring.beans.DefaultXmlBeanFactory").init()/>
<cfsavecontent variable="beanConfigs">
<beans>
<bean id="myFirstBean" class="myApp.model.myFirstBean"/>
</beans>
</cfsavecontent>
<cfset myBeanFactory.loadBeansFromXmlRaw(beanConfigs,true)/>

3. Pass the DefaultXmlBeanFactory a parsed Coldfusion xml object.
<!--- void loadBeansFromXmlObj(any beanDefinitionXmlObj, boolean ConstructNonLazyBeans) --
->
<cfset myBeanFactory = createObject("component","coldspring.beans.DefaultXmlBeanFactory").init()/>
<cffile action="read" file="/path/to/file.xml" variable="xmlContent"/>
<cfset someXml = xmlParse(xmlContent)/>
<cfset myBeanFactory.loadBeansFromXmlObj(someXml,true)/>

You're probably wondering what "ConstructNonLazyBeans" does, but first we'll explain the basics of configuring the
DefaultXmlBeanFactory and the beans you put in it.

II.III <bean/> tag attributes

BeanFactory Reference

7

To explore all of the attributes of a ColdSpring bean definition, one could look at the J2EE Spring framework's DTD (which
ColdSpring expects you to adhere to). However, not every attribute or tag is fully implemented in ColdSpring, and there are some
that aren't applicable to CFC development, so they are simply ignored.
ColdSpring beans are defined via the <bean/> tag, and here are the attributes of the <bean/> tag worth mentioning (attributes in
bold are required):

Attribute Name Description and Use Implemented/

Planned/
Won't Implement

id This is the identifier used to store your bean. When you ask
ColdSpring to give you a reference to one of its beans, you'll use
this same identifier.

Implemented

name Serves the same purpose as id, however can accept multiple
identifiers via a comma separated list. This effectively allows you to
define your bean as having several aliases.

Planned

class The actual CFC type to create for this bean definition. Implemented
singleton true|false – When true, indicates whether one shared instance of

your bean will be kept by the BeanFactory and returned to all
retrieval requests. When false, aImplemented new instance will be
created and returned to each retrieval request.

Implemented

init-method A name of a method that ColdSpring will call on a bean after all its
dependencies have been set. Since we use "init" as a constructor
in CFCs, "setup" or "configure" are good alternatives. If your CFC
needs to do something with one or more of its dependencies
immediately after receiving them, init-method is the easiest way to
do it.

Implemented

lazy-init true|false – When true, ColdSpring won't create the bean (or any
dependencies of the bean that haven't been created) until it is
asked for the bean. When false, ColdSpring will create the bean
immediately upon receiving its definition (unless the method used
to populate the BeanFactory tells ColdSpring not to via. the
ConstructNonLazy beans argument - see II.II)

Implemented

destroy-method If implemented, ColdSpring would call this method on a bean Won't Implement

ColdSpring Framework 1.0 Documentation

8

before it is destroyed. Won't Implement
autowire no|byName|byType -Tells ColdSpring to autowire in dependencies

by looking at the public properties (setters) of your bean and seeing
if it knows about a bean that would match the signature. It will look
for a match either by the name (or id) of a bean, or by the bean's
type.

Implemented (except for
"constructor" and
autodetect values).

depends-on If implemented, would explicitly tell the beanFactory to fully
instantiate the bean specified by this attribute before creating the
bean that defines depends-on.

Won't Implement

factory-method

Causes ColdSpring to call this method on the class defined in the
bean to return the actual instance to use for this bean.

Won't Implement (by
itself, see factory-bean)

factory-bean id of a bean, known to Coldspring, on which the specified factory-
method would be called to obtain an instance.

Implemented (use with
factory-method)

Those are the standard attributes of a bean tag. There are a few others that are seriously outside the scope of ColdSpring due to
the differences between CFCs and Java classes, so I won't mention them here.

II.IV The <bean/> tag's children

There are only two available child-tags of <bean/>, typically used to express dependencies among your beans or to supply the
bean with some type of data (usually configuration information, or placeholders for configuration).

The <bean/> child tags implemented in ColdSpring are:

1. <constructor-arg name="argumentName"/>
This tag will cause Coldspring to supply your bean with a value or object reference when it is instantiated (during a CFC's
init() method), passed as an argument named via the name attribute.

2. <property name="propertyName" />
Similar in nature to constructor arg, however in this case ColdSpring will pass some value or object reference into your
bean as an argument to a setter method, identified via the name attribute. Thus, your CFC must have a setter method

BeanFactory Reference

9

name that matches the property tag's name attribute (for example if your property is named "foo" then your CFC needs a
setFoo() method).

The <lookup-method /> tag has yet to be implemented in ColdSpring. If you are interested in what it does, it is a way of
injecting a method into a CFC that can then be used by that CFC to retrieve a bean from the factory. Think of it like mailing
someone a cellphone with your number punched in rather then calling them directly.

II.V Children of <constructor-arg/> and <property/>
Both <constructor-arg/> and <property/> can accept a wide range of child tags, used to define what values or object
references need to be passed into the constructor argument or property setter, respectively.
The table below lists all currently available child tags to both <constructor-arg/> and <property/>

Tag Example Usage Description

<value/></value> <value>15</value>

<value>${key.subKey}</value>
Used to pass in an arbitrary value,
defined either directly in the xml or in
the defaultProperties supplied to the
BeanFactory.

<ref/> <ref bean="myBeanId"/> Used to pass in a reference to another
bean defined within the BeanFactory.
The bean="" attribute references the ID
of the other bean.

<bean /> <bean id="foo" class="foo" …
 </bean>

Can be used to define an entire bean
to be used only for the purpose of
injecting into another bean. All
attributes and child tags will be
available.

<map/> <map>
<entry key="foo">

<value>5</value>
</entry>
<entry key="bar">

Will pass a struct into your bean. Each
entry within the map will correspond to
a key within the passed-in struct. The
child tags of <entry/> are any tags

ColdSpring Framework 1.0 Documentation

10

<ref id="barBean"/>
</entry>

</map>

listed here, including map. Since CF
only supports simple values for struct
keys, only the key="" attribute of entry
is supported.

<list/> <list>
<ref id="barBean"/>
<value>5</value>

</list>

Like <map/>, but an array instead of a
struct. Child tags can include anything
listed here (including <map/> and
<list/>)

The other tags specified by the Spring DTD, <null/>, <props/>, and <set/> are either yet-to-be implemented or won't be
implemented in ColdSpring.
There is no limit to the "depth" of your bean definitions, demonstrated by this example snippet (which will work provided the CFC's
exist):
<bean id="bean1" class="path.to.bean1">

<constructor-arg name="bean2">
<bean id="bean2" class="path.to.bean2">

<property name="bean3">
<bean id="bean3" class="path.to.bean3">

<property name="bean4">
<ref bean="bean4"/>

</property>
</bean>

</property>
</bean>

</constructor>
</bean>
<bean id="bean4" class="path.to.bean4"/>

II.VI Autowiring
The term "autowire" refers to the ability of the ColdSpring beanFactory to automatically wire dependent objects together without
necessarily having to define those dependencies in the xml bean definitions. When you define your CFCs within a ColdSpring
beanFactory, it inspects each CFC's metadata and sees if there are properties or constructor-arguments that match other CFC's it

BeanFactory Reference

11

knows about. By default, autowiring is turned off within the BeanFactory, but if you turn it on (you can do it bean-by-bean or for an
entire set of beans), ColdSpring will automatically inject dependencies (automatically wire things together).

There are two autowiring settings, "byName" and "byType". As you can probably guess, "byName" matches components by
their name, meaning if you have a setSomeService(...) method in a component or a constructor-argument named
"SomeService", and ColdSpring knows a <bean/> with an id="SomeService", it will inject whatever "SomeService" is into
your component. "byType" works by using the "type" attribute in your ColdFusion code, meaning if you have a setter-method
with an argument which is type="type.of.SomeService" (or a constructor-argument), and ColdSpring knows a bean with
class="type.ofSomeService" it will inject that <bean/> into your component.

To set autowiring on an entire set of <beans/>, use the default-autowire attribute:

<beans default-autowire="byName">

<bean id="cfc1" class="..."/>
<bean id="cfc2" class="..."/>
...

</beans>

To set autowiring on an individual bean (this will override any default-autowire setting), use the autowire attribute:
<beans>

<bean id="cfc1" class="..." autowire="byType"/>
<bean id="cfc2" class="..."/>
<bean id="cfc3" class="..." autowire="byName"/>
...

</beans>

II.VII Using Your Own Factories
factory-method and factory-bean are two attributes of the <bean/> tag in ColdSpring bean definitions that allow you to
use legacy factories that you may have written, or otherwise any component who exposes a method that creates other
components (or theoretically any value).

To use this functionality, you must first define the factory you want to use:

ColdSpring Framework 1.0 Documentation

12

<bean id="someDAOFactory" class="myapp.components.SomeDAOFactory">
<constructor-arg name="databaseType">

<value>MySQL</value>
</constructor-arg>

</bean>

Then, you can use your factory to define other ColdSpring beans, by using the factory-bean attribute to point at your factory
and the factory-method attribute to indicate which method ColdSpring should call on your factory to obtain an instance from it.
Assuming someDAOFactory above has a getDAO() method that returns the proper object, you could define the resulting
components as <bean/>'s in ColdSpring like this:

<bean id="someDAO" factory-bean="someDAOFactory" factory-method="getDAO"/>

Remember, you won't define a class="" attribute on these <bean/> because the bean definition indicates the result of a
method call on another bean. Also, you may need to supply arguments to your factory's method - perhaps
someDAOFactory.getDAO() needs the type of DAO you want e.g. someDAOFactory.getDAO('person') returns a personDAO. You use
the <constructor-arg/> tag to pass arguments to a factory method, like so:

<bean id="personDAO" factory-bean="someDAOFactory" factory-method="getDAO">

<constructor-arg name="DAOType">
<value>person</value>

</constructor-arg>
</bean>

If you use <property/> on a <bean/> defined with factory-bean and factory-method, it will be set on the resulting component just
like any other property. Take the following bean definition:

<bean id="personDAO" factory-bean="someDAOFactory" factory-method="getDAO">

<constructor-arg name="DAOType">
<value>person</value>

</constructor-arg>
<property name="DatabaseName">

<value>MyDatabase</value>
</property>

</bean>

When ColdSpring is asked for the bean named "personDAO", it will first call getDAO('person') on the someDAOFactory, and

BeanFactory Reference

13

then call setDatabaseName('MyDatabase') on the component returned from getDAO('person'). <property/> will only work if your
factory's method is returning a component, as factory-method can be used to define arbitrary values such as strings, structs, etc.
For example, if you needed to explicitly pass the returning value of a method call into another component, you can use the factory-
bean/method approach like so:

<bean id="someComponent" class="type.of.SomeComponent">

<property name="DatasourceName">
<bean id="dsn" factory-bean="ConfigService" factory-method="getConfigValue">

<constructor-arg name="ValueName">
<value>dsn</value>

</constructor-arg>
</bean>

</property>
</bean>

In the above example, when asked for someComponent, ColdSpring would inject the result of calling
ConfigService.getConfigValue('dsn')

II.VIII Hierarchical Bean Factories
ColdSpring provides a way to link BeanFactories together in a hierarchy, allowing you to define <bean/>'s in one BeanFactory
and then have a "child" BeanFactory resolve dependencies from its parent. A typical example would be "system-wide"
components like a "LoggerService":

<beans>

<bean id="LoggerService" class="some.logger.component"/>
</beans>

Say we create our GlobalBeanFactory and supply it with the above definitions. We could then create a new BeanFactory (we'll call
it SomeAppBeanFactory) and supply it with these definitions:

<beans>

<bean id="SomeComponent" class="some.application.component">
<property name="LoggerService">

<ref bean="LoggerService"/>

ColdSpring Framework 1.0 Documentation

14

</property>
</bean>

</beans>

Of course, if you just create SomeAppBeanFactory and supply it with the above XML, SomeComponent would not get injected with a
LoggerService because ColdSpring has no idea of a bean named "LoggerService". However, if you call the method
setParent() on a BeanFactory, and pass in a reference to another BeanFactory, ColdSpring will resolve dependencies that exist
in the "parent" BeanFactory:

<cfset SomeAppBeanFactory.setParent(GlobalBeanFactory)/>

After running the above line of code, SomeAppBeanFactory would be able to resolve the LoggerService <bean/>. Also, lets say
you have several "child" BeanFactories, and one of them is having issues using the system-wide "LoggerService". You could
define your own "LoggerService" <bean/> in that specific BeanFactory and ColdSpring would use that one instead of the
one from the parent.

15

IV. Aspect Oriented Programming w/ ColdSpring

IV.I. Introduction
Aspect Oriented Programming is a programming model that allows you to think about parts of an application in terms of
generalized concerns, as apposed to working with a hierarchy of objects as you would in Object Oriented Programming. Although
the concept may seem like a big shift in thinking, it is actually highly complementary to traditional OOP architecture. Using AOP is
primarily a process of breaking apart your application into primary business concerns, those that lend themselves to traditional
OOP style modeling, and generalized concerns, things like logging, security, and caching, which can be written in a abstracted,
reusable manner, and then applied globally across your model with an AOP framework. Concerns like these can be thought of as
aspects of your application, functionality that cuts across many of the components in your primary business logic. For this reason
it's often said that AOP deals with crosscutting concerns. Working with AOP in the context of an IoC container such as ColdSpring
is particularly easy and powerful, as you will primarily be dealing with programming the functionality of your aspects, and use the
bean factory configuration file to configure your model components with this added functionality.

IV.II. Concepts
Many new technologies often come with new and sometimes confusing terminology, and AOP is certainly no exception. Below are
some of the new terms you will be need to become familiar with, you may want to reference this list as you gain knowledge
working with AOP.

Aspects: Aspects are the generalized, crosscutting concerns that you would like to apply to your model components. Your will
primarily implement these aspect through the programming of Advice objects which will be joined to your model components
through a process called Weaving.

Joinpoints: Joinpoints are areas of your application where you would like to apply your Advice objects to. Joinpoints are an
abstract concept in AOP, there are no Joinpoint components that you will use, they are specific places in your model where you

ColdSpring Framework 1.0 Documentation

16

would like the functionality in your aspects to occur. For all intents and purposes, Joinpoints are methods in your cfcs where you
will be adding functionality.

Pointcuts: Pointcuts are special components that you can configure to identify Joinpoints for you. Pointcuts are configured with
the names of methods, which can contain the '*' wildcard character, and are the primary mechanism with which your Aspects are
applied to methods in your model component.

Advice: Advice objects are the primary implementation of your Aspects. Working with AOP is mainly a process of adding
functionality to existing methods in a cfc. You can think of this as adding advice to those methods.

Advisors: Advisors are special components that you configure to create pointcuts for you, and associate Advice objects with
them. Advisors are used during the weaving process to build proxy objects, they are the mechanism for defining the how your
Advice components should be applied to target objects.

Target Object: The target object is the cfc that you would like to add functionality to. ColdSpring will create a new object based on
this target object that you can use in place of it elsewhere in your model.

Proxy Object: A proxy object is an object that ColdSpring creates to accept method calls intended for your target object, which
will then look to see if there are any Advice objects to use before forwarding the method call to your target. The proxy object
actually contains all the aspects and pointcuts it needs along with your target object. ColdSpring creates this object for you, which
will have the same method signatures and type of your original object, making its use transparent to the rest of your model
components.

Weaving: Weaving is the process of generating a Proxy Object, providing it with any Aspects and Pointcuts you have configured
for a target object. This is performed by a ProxyBeanFactory, which is configured in your ColdSpring xml configuration file.

Although there are a few confusing new concepts to swallow here, it is important to understand that most of these are just that,
concepts. The primary objects that you will be concerning your self with are Advice components, as they are where you will
actually be writing the functionality that make up your Aspects, and Advisors, which you will define in your ColdSpring
configuration file with rules that it will use to create Pointcuts for your advice. You will also configure ProxyFactoryBeans that will
take care take care of building proxy objects for you (through weaving).

IV.III. Advice Types

Aspect Oriented Programming w/ ColdSpring

17

ColdSpring AOP offers four types of Advice to work with. You create an advice component of one of the following types by
extending a ColdSpring.aop component, and implementing a method. This allows ColdSpring to know how to use your
component.

BeforeAdvice: BeforeAdvice components will be executed before a method that you have determined to be a Joinpoint. They
have access to the method name being called, the component that the call is targeted to, and all the arguments being passed to
that method. BeforeAdvice should not alter the method or arguments, as that could cause unexpected results, and possibly hard
to debug exceptions.

AfterReturningAdvice: AfterReturningAdvice components are called after a method has completed execution and possibly
returned a result. They also have access to the method, target object and arguments to the method call, as well as any returned
value. Like BeforeAdvice, best practices would dictate that you should not alter the return value of a method call. If you intend to
actually effect method execution in some way, you should be using the more powerful AroundAdvice.

AroundAdvice: AroundAdvice is a far more powerful type of advice than before or after advice, as it gives you complete control
over the method execution. ColdSpring AOP implements this type of advice through the use of a component called
MethodInterceptor, which in turn uses a MethodInvocation object to yield control over the method call. Although these component
names probably sound strange, then are implementations of interfaces developed by a group of Java developers called the AOP
Alliance, which consists of developers from the Spring Framework, Nannings Aspects, and AspectJ. These interfaces are used to
provide consistency and portability between AOP implementations, and give you the benefit of having a familiarity with the
concepts if you find yourself working with one of these frameworks.

ThrowsAdvice: ThrowsAdvice, as the name implies, are called when a method call throws an exception. You have complete
access to the exception that occurred and the ability to do whatever you want with it.

IV.III.I BeforeAdvice

BeforeAdvice is a simple type of advice that is used to insert behavior before a method is executed. BeforeAdvice components are
automatically inserted before a method call, and don't need to do anything to cause the target method to be invoked. This gives it
the advantage of being very easy to use.

To create a before advice component, you extend the pseudo-abstract component coldspring.aop.BeforeAdvice. This will enable
ColdSpring to recognize your Advice and insert it before a method call on a proxied object. To implement a before advice, you

ColdSpring Framework 1.0 Documentation

18

must define the following method in your component:

before(method, args, target)

Argument Type Description
method coldspring.aop.Method The Method object wraps the original method call.

Proceed() will automatically be called for you on the
Method object after your BeforeAdvice executes (to
execute the original method call)

args Struct The argument collection that will be passed to the
method call in the Method object

target Component The target object of the method call in the Method
object (useful if your advice is very generic and
needs to inspect the component that it is being
applied to)

The coldspring.aop.Method component exposes the following methods during within before(...)

Method Signature Return Type Description
getMethodName() String The name of the

original method that's
being called.

Example

The following example defines a simple logging advice to run before a method is executed. This Advice uses a LoggingService,
and will interrogate the args and target arguments to send information about the method call to the LoggingService. By separating
out the implementation of the actual logging, we gain the ability to easily enable/disable logging, alter the log file location, or switch
implementations at will.

<cfcomponent name="LoggingBeforeAdvice" extends="coldspring.aop.BeforeAdvice">

Aspect Oriented Programming w/ ColdSpring

19

<!--- setters for dependencies --->
<cffunction name="setLoggingService" returntype="void" access="public" output="false"

hint="Dependency: logging service">
<cfargument name="loggingService" type="net.klondike.service.LoggingService"

required="true"/>
<cfset variables.m_loggingService = arguments.loggingService />

</cffunction>
<cffunction name="before" access="public" returntype="any">

<cfargument name="method" type="coldspring.aop.Method" required="true" />
<cfargument name="args" type="struct" required="true" />
<cfargument name="target" type="any" required="true" />
<cfset var arg = '' />
<cfset var argString = '' />
<cfset var objName = getMetadata(arguments.target).name />
<cfloop collection="#arguments.args#" item="arg">

<cfif isSimpleValue(arguments.args[arg])>
<cfif len(argString)>

<cfset argString = argString & ', ' />
</cfif>
<cfset argString = argString & arg & '=' & arguments.args[arg] >

</cfif>
</cfloop>
<cfset variables.m_loggingService.info("[" & objName & "] "

& method.getMethodName()
& "(" & argString & ") called!") />

</cffunction>
</cfcomponent>

The ColdSpring bean definitions for your advice would look like this:

<!-- logging service -->
<bean id="loggingService" class="net.klondike.component.LoggingService" />
<!-- set up the logging advice -->
<bean id="loggingAdvice" class="net.klondike.aspects.LoggingBeforeAdvice">

<property name="loggingService">
<ref bean="loggingService" />

</property>
</bean>

You would then supply your advice to an advisor. The advisor is configured with either a property called "mappedName", which
indicated a string pattern for which method names we want our advice applied to, or "mappedNames" which can be a comma-
separated list. You can use a wildcard character ("*") in either to match multiple methods. In the example here we use
mappedNames="*", which will match all methods:

ColdSpring Framework 1.0 Documentation

20

<bean id="loggingAdvisor" class="coldspring.aop.support.NamedMethodPointcutAdvisor">

<property name="advice">
<ref bean="loggingAdvice" />

</property>
<property name="mappedNames">

<value>*</value>
</property>

</bean>

This advisor can configured to intercept the method calls on any object in the BeanFactory by using ProxyFactoryBean. Seen
below, we set up the CatalogDAO as normal but we give it an id="catalogDAOTarget". We then create a ProxyFactoryBean
with the proper id="catalogDAO". Thus anyone asking ColdSpring for the bean "catalogDAO" (or <bean/>'s that are wired
to catalogDAO) get our ProxyFactoryBean, however it looks and smells like a regular catalogDAO (but in actuality has our advisor
snooping method calls and applying advice as needed):

<!-- set up a proxy for the dao -->
<bean id="catalogDAOTarget"

class="net.klondike.component.catalogDAO">
<property name="dsn">

<value>klondike</value>
</property>

</bean>
<bean id="catalogDAO" class="coldspring.aop.framework.ProxyFactoryBean">

<property name="target">
<ref bean="catalogDAOTarget" />

</property>
<property name="interceptorNames">

<list>
<value>loggingAdvisor</value>

</list>
</property>

</bean>

IV.III.II AfterReturningAdvice

Aspect Oriented Programming w/ ColdSpring

21

AfterReturningAdvice is used to insert behavior after a method has executed. These advice types are automatically inserted after
a method is called, and although this type of advice can read any return value from the called method, it does not need to do
anything to ensure normal method execution. As in BeforeAdvice, this also gives it an advantage of being simple to use.
To create an after returning advice component, you extend the pseudo-abstract component
coldspring.aop.AfterReturningAdvice. This enables ColdSpring to recognize the advice and insert it after the method has
executed. To implement an after retuning advice, you must define the following method in your component:

afterReturning(returnVal, method, args, target)

Argument Type Description
returnVal any If the method you're advising returned a value, it will be

defined in the arguments scope as returnVal. If your
method did not return a value returnVal will not be
defined.

method coldspring.aop.Method The Method object wraps the original method call.
Proceed() will automatically be called for you on the
Method object after your BeforeAdvice executes (to
execute the original method call)

args Struct The argument collection that will be passed to the
method call in the Method object

target Component The target object of the method call in the Method object
(useful if your advice is very generic and needs to inspect
the component that it is being applied to)

The coldspring.aop.Method component exposes the following methods during within afterReturning(...)

Method Signature Return Type Description
getMethodName() String The name of the

original method that's
being called.

ColdSpring Framework 1.0 Documentation

22

Example

The following example defines a simple logging advice to run after a method is executed. Again, this Advice uses a
LoggingService, and will interrogate the returnVal, args and target arguments to send information about the method call and
return value to the LoggingService.

<cfcomponent name="LoggingAfterAdvice" extends="coldspring.aop.AfterReturningAdvice">

<!--- setters for dependencies --->
<cffunction name="setLoggingService" returntype="void" access="public" output="false"

hint="Dependency: logging service">
<cfargument name="loggingService" type="net.klondike.service.LoggingService"

required="true"/>
<cfset variables.m_loggingService = arguments.loggingService />

</cffunction>
<cffunction name="afterReturning" access="public" returntype="any">

<cfargument name="returnVal" type="any" required="false" />
<cfargument name="method" type="coldspring.aop.Method" required="true" />
<cfargument name="args" type="struct" required="true" />
<cfargument name="target" type="any" required="true" />
<cfset var arg = '' />
<cfset var argString = '' />
<cfset var objName = getMetadata(arguments.target).name />
<cfloop collection="#arguments.args#" item="arg">

<cfif isSimpleValue(arguments.args[arg])>
<cfif len(argString)>

<cfset argString = argString & ', ' />
</cfif>
<cfset argString = argString & arg & '=' & arguments.args[arg] >

</cfif>
</cfloop>
<cfif StructKeyExists(arguments,"returnVal")

and isSimpleValue(arguments.returnVal)>
<cfset variables.m_loggingService.info("[" & objName & "] "

& method.getMethodName()
& "(" & argString & ") called! Returning: " & arguments.returnVal) />

<cfelse>
<cfset variables.m_loggingService.info("[" & objName & "] "

& method.getMethodName()
& "(" & argString & ") called!") />

</cfif>

</cffunction>

Aspect Oriented Programming w/ ColdSpring

23

</cfcomponent>

The ColdSpring bean definitions for your advice would look like this:

<!-- logging service -->
<bean id="loggingService" class="net.klondike.component.LoggingService" />
<!-- set up the logging advice -->
<bean id="loggingAdvice" class="net.klondike.aspects.LoggingAfterAdvice">

<property name="loggingService">
<ref bean="loggingService" />

</property>
</bean>

You would then supply your advice to an advisor. The advisor is configured with either a property called "mappedName", which
indicated a string pattern for which method names we want our advice applied to, or "mappedNames" which can be a comma-
separated list. You can use a wildcard character ("*") in either to match multiple methods. In the example here we use
mappedNames="*", which will match all methods:

<bean id="loggingAdvisor" class="coldspring.aop.support.NamedMethodPointcutAdvisor">

<property name="advice">
<ref bean="loggingAdvice" />

</property>
<property name="mappedNames">

<value>*</value>
</property>

</bean>

Same as before, this advisor can configured to intercept the method calls on any object in the BeanFactory by using
ProxyFactoryBean. Seen below, we set up the CatalogDAO as normal but we give it an id="catalogDAOTarget". We then
create a ProxyFactoryBean with the proper id="catalogDAO". Thus anyone asking ColdSpring for the bean "catalogDAO"
(or <bean/>'s that are wired to catalogDAO) get our ProxyFactoryBean, however it looks and smells like a regular catalogDAO
(but in actuality has our advisor snooping returning method calls and applying advice as needed):

<!-- set up a proxy for the dao -->
<bean id="catalogDAOTarget"

class="net.klondike.component.catalogDAO">
<property name="dsn">

ColdSpring Framework 1.0 Documentation

24

<value>klondike</value>
</property>

</bean>
<bean id="catalogDAO" class="coldspring.aop.framework.ProxyFactoryBean">

<property name="target">
<ref bean="catalogDAOTarget" />

</property>
<property name="interceptorNames">

<list>
<value>loggingAdvisor</value>

</list>
</property>

</bean>

IV.III.III AroundAdvice aka MethodInterceptor

Where BeforeAdvice and AfterAdvice give you're the ability to inject functionality either before or after method execution,
AroundAdvice gives you both total control over and responsibility for method invocation. In around advice you are given a
command object called a MethodInvocation which not only gives you access to the method name, target object, and arguments to
the method call, but also access to the proceed() method of the MethodInvocation command object containing the method call. It
is actually your responsibility to call proceed(), or the method call you are advising will not execute at all. For this reason,
AroundAdvice is considerably more powerful than before or after advice.

AroundAdvice is implemented through a component called MethodInterceptor, as it gives you the ability to do just that, intercept a
method call, and perform any operation necessary. When ColdSpring finds a MethodInterceptor for a method, it will relinquish all
control to that object, and provide it with a MethodInvocation object, which will be used to interrogate the method call, and then
trigger it's operation. Because Advice components can be chained together, it is worth noting that the object that receives the call
to proceed() may not actually be the target method, it may be another MethodInterceptor. Although the internal processing may
seem quite complex, the MethodInvocation object is built with all the necessary information to make this transparent to the user.
It's important to realize that the MethodInterceptor is responsible for returning whatever needs to be returned from the actual
method call - perhaps it's just whatever is returned from proceed(), or a completely different value all together.

To create a MethodInterceptor, you will extend the pseudo-abstract component coldspring.aop.MethodInterceptor. This will
enable ColdSpring to recognize your advice and add it to the Advice chain used internally by the MethodInvocation object. To

Aspect Oriented Programming w/ ColdSpring

25

implement a MethodInterceptor, you must define the following method in your component:

invokeMethod(methodInvocation)

Argument Type Description
methodInvocation coldspring.aop.MethodInvocation The MethodInvocation object (described in detail

below) gives you access to the method name, target
object, and argument collection, as well as control
over method execution through the proceed() method

The methodInvocation component exposes the following methods:

Method Return Type Description
proceed() void Invokes the next MethodInterceptor or the target

method.
getMethod() coldspring.aop.Method Returnes the Method object containing the target

method.
getArguments() struct Returns the argument collection from the original

method call.
getTarget() Component Returnes the target object for the method call

The coldspring.aop.Method component exposes the following methods:

Method Signature Return Type Description
getMethodName() String The name of the

original method that's
being called.

ColdSpring Framework 1.0 Documentation

26

Example

The following example defines a simple logging advice to run as method interceptor. As you can see, the advice calls proceed()
on the MethodInvocation object, and inspect the return value for logging purposes.

<cfcomponent name="LoggingAroundAdvice" extends="coldspring.aop.MethodInterceptor">

<!--- setters for dependencies --->
<cffunction name="setLoggingService" returntype="void" access="public" output="false"

hint="Dependency: logging service">
<cfargument name="loggingService" type="net.klondike.service.LoggingService"

required="true"/>
<cfset variables.m_loggingService = arguments.loggingService />

</cffunction>
<cffunction name="invokeMethod" access="public" returntype="any">

<cfargument name="methodInvocation" type="coldspring.aop.MethodInvocation"
required="false" />

<cfset var arg = '' />
<cfset var argString = '' />

<cfset var args = arguments.methodInvocation.getArguments() />
<cfset var methodName = arguments.methodInvocation.getMethod().getMethodName() />
<cfset var objName = getMetadata(arguments.methodInvocation.getTarget()).name />

<cfloop collection="#args#" item="arg">

<cfif isSimpleValue(args[arg])>
<cfif len(argString)>

<cfset argString = argString & ', ' />
</cfif>
<cfset argString = argString & arg & '=' & args[arg] >

</cfif>
</cfloop>

<cfset rtn = arguments.methodInvocation.proceed() />

<cfif isDefined('rtn') and isSimpleValue('rtn')>

<cfset variables.m_loggingService.info("[" & objName & "] "
& methodName & "(" & argString & ") complete! Returning: " & 'rtn') />

<cfelse>
<cfset variables.m_loggingService.info("[" & objName & "] "

& methodName & "(" & argString & ") complete!") />

Aspect Oriented Programming w/ ColdSpring

27

</cfif>

<cfif isDefined('rtn')>

<cfreturn rtn />
</cfif>

</cffunction>

</cfcomponent>

The ColdSpring bean definitions for your MethodInterceptor would look like this:

<!-- logging service -->
<bean id="loggingService" class="net.klondike.component.LoggingService" />
<!-- set up the logging advice -->
<bean id="loggingAdvice" class="net.klondike.aspects.LoggingAroundAdvice">

<property name="loggingService">
<ref bean="loggingService" />

</property>
</bean>

You would then supply your advice to an advisor. The advisor is configured with either a property called "mappedName", which
indicated a string pattern for which method names we want our advice applied to, or "mappedNames" which can be a comma-
separated list. You can use a wildcard character ("*") in either to match multiple methods. In the example here we use
mappedNames="*", which will match all methods:

<bean id="loggingAdvisor" class="coldspring.aop.support.NamedMethodPointcutAdvisor">

<property name="advice">
<ref bean="loggingAdvice" />

</property>
<property name="mappedNames">

<value>*</value>
</property>

</bean>

Same as before, this advisor can configured to intercept the method calls on any object in the BeanFactory by using
ProxyFactoryBean. Seen below, we set up the CatalogDAO as normal but we give it an id="catalogDAOTarget". We then
create a ProxyFactoryBean with the proper id="catalogDAO". Thus anyone asking ColdSpring for the bean "catalogDAO"
(or <bean/>'s that are wired to catalogDAO) get our ProxyFactoryBean, however it looks and smells like a regular catalogDAO

ColdSpring Framework 1.0 Documentation

28

(but in actuality has our advisor snooping method calls and applying our MethodInterceptor as needed):

<!-- set up a proxy for the dao -->
<bean id="catalogDAOTarget"

class="net.klondike.component.catalogDAO">
<property name="dsn">

<value>klondike</value>
</property>

</bean>
<bean id="catalogDAO" class="coldspring.aop.framework.ProxyFactoryBean">

<property name="target">
<ref bean="catalogDAOTarget" />

</property>
<property name="interceptorNames">

<list>
<value>loggingAdvisor</value>

</list>
</property>

</bean>

IV.III.IV ThrowsAdvice

ThrowsAdvice is another simple type of advice that is used to insert behavior when method execution throws an exception.
ColdSpring's AOP framework will gather the details of the exception and pass them to your advice. It's important to note that you
cannot suppress the exception unless you throw a different one (if you want that level of control you may want to use
AroundAdvice).

To create a ThrowsAdvice component, you extend the pseudo-abstract component coldspring.aop.ThrowsAdvice. This will
enable ColdSpring to recognize your Advice and insert it when a method call on a proxied object throws an exception. To
implement a ThrowsAdvice, you can do one of two things:

• implement an afterThrowing() or afterThrowingAny() method, which coldspring will route all exceptions to

Aspect Oriented Programming w/ ColdSpring

29

• implement methods for the exception types you are interested in - for instance if you wanted to catch exceptions with a
type="SqlException", you would implement a afterThrowingSqlException() method.

It's up to you, because you could always interrogate the exception type in a afterThrowing() method and then call the appropriate
method yourself, ColdSpring just has some extra machinery to automate the mapping of exception types to methods in your
advice.

The syntax for an afterThrowing*() method(s) are as follows

afterThrowing(method, args, target, exception)

Argument Type Description
method coldspring.aop.Method The Method object wraps the original method call.

Proceed() will automatically be called for you on the
Method object after your BeforeAdvice executes (to
execute the original method call)

args Struct The argument collection that will be passed to the
method call in the Method object

target Component The target object of the method call in the Method object
(useful if your advice is very generic and needs to
inspect the component that it is being applied to)

exception coldspring.aop.Exception A component containing the details of the exception that
occurred (see below)

The coldspring.aop.Exception component exposes the following methods during afterThrowing*(...)

Method Signature Return Type Description
getType() string returns the type of the exception
getMessage() string returns the message within the exception
getDetail() string returns the detail within the exception

ColdSpring Framework 1.0 Documentation

30

getTagContext() array returns an array of tags within which the exception occured
getExtendedInfo() string returns extended info, if present
getNativeErrorCode() string returns a native database error code, if present
getSqlState() string returns sqlstate, if present
getSql() string returns the sql attempting to execute, if present
getQueryError() string returns the query error, if present
getWhere() string returns the where clause of the query attempting to execute, if

present
getErrNumber() string returns the database-specific error number, if present
getMissingFileName() string returns the name of a missing file, if present (exists when a

template can't be found)
getLockOperation() string when getType() == "lock", returns operation that failed

(Timeout, Create Mutex, or Unknown, if present
getLockName() string when getType() == "lock", returns name of affected lock (if the

lock is unnamed, the value is "anonymous").
getErrorCode() string returns errorcode of exception, when present
getBaseException() cf exception (aka

cfcatch)
Returns the actual exception

The coldspring.aop.Method component exposes the following methods during afterThrowing*(...)

Method Signature Return Type Description
getMethodName() String The name of the

original method that's
being called.

Example

The following example defines a simple logging advice to run when a method throws an exception. This Advice uses a
LoggingService, and will interrogate the args, target, and exceptions arguments to send information about the method exception
to the LoggingService. By separating out the implementation of the actual logging, we gain the ability to easily enable/disable

Aspect Oriented Programming w/ ColdSpring

31

logging, alter the log file location, or switch implementations at will.

<cfcomponent name="LoggingThrowsAdvice" extends="coldspring.aop.ThrowsAdvice">

<!--- setters for dependencies --->
<cffunction name="setLoggingService" returntype="void" access="public" output="false"

hint="Dependency: logging service">
<cfargument name="loggingService" type="net.klondike.service.LoggingService"

required="true"/>
<cfset variables.m_loggingService = arguments.loggingService />

</cffunction>

<cffunction name="afterThrowing" access="public" returntype="any">

<cfargument name="method" type="coldspring.aop.Method" required="true" />
<cfargument name="args" type="struct" required="true" />
<cfargument name="target" type="any" required="true" />
<cfargument name="exception" type="coldspring.aop.Method" required="true" />

<cfset var arg = '' />
<cfset var argString = '' />
<cfset var objName = getMetadata(arguments.target).name />
<cfloop collection="#arguments.args#" item="arg">

<cfif isSimpleValue(arguments.args[arg])>
<cfif len(argString)>

<cfset argString = argString & ', ' />
</cfif>
<cfset argString = argString & arg & '=' & arguments.args[arg] >

</cfif>
</cfloop>
<cfset variables.m_loggingService.info("[" & objName & "] "

& method.getMethodName()
& "(" & argString & ") threw an exception:
& arguments.exception.getType()
& "(" & arguments.exception.getMessage()
& "|" & arguments.exception.getDetail() & ")" />

</cffunction>
</cfcomponent>

The ColdSpring bean definitions for your advice would look like this:

<!-- logging service -->
<bean id="loggingService" class="net.klondike.component.LoggingService" />
<!-- set up the logging advice -->
<bean id="loggingAdvice" class="net.klondike.aspects.LoggingThrowsAdvice">

<property name="loggingService">

ColdSpring Framework 1.0 Documentation

32

<ref bean="loggingService" />
</property>

</bean>

You would then supply your advice to an advisor. The advisor is configured with either a property called "mappedName", which
indicated a string pattern for which method names we want our advice applied to, or "mappedNames" which can be a comma-
separated list. You can use a wildcard character ("*") in either to match multiple methods. In the example here we use
mappedNames="*", which will match all methods:

<bean id="loggingAdvisor" class="coldspring.aop.support.NamedMethodPointcutAdvisor">

<property name="advice">
<ref bean="loggingAdvice" />

</property>
<property name="mappedNames">

<value>*</value>
</property>

</bean>

This advisor can configured to intercept the method calls on any object in the BeanFactory by using ProxyFactoryBean. Seen
below, we set up the CatalogDAO as normal but we give it an id="catalogDAOTarget". We then create a ProxyFactoryBean
with the proper id="catalogDAO". Thus anyone asking ColdSpring for the bean "catalogDAO" (or <bean/>'s that are wired
to catalogDAO) get our ProxyFactoryBean, however it looks and smells like a regular catalogDAO (but in actuality has our advisor
snooping method calls and applying advice as needed (when exceptions occur)):

<!-- set up a proxy for the dao -->
<bean id="catalogDAOTarget"

class="net.klondike.component.catalogDAO">
<property name="dsn">

<value>klondike</value>
</property>

</bean>
<bean id="catalogDAO" class="coldspring.aop.framework.ProxyFactoryBean">

<property name="target">
<ref bean="catalogDAOTarget" />

</property>
<property name="interceptorNames">

<list>
<value>loggingAdvisor</value>

Aspect Oriented Programming w/ ColdSpring

33

</list>
</property>

</bean>

35

III. Developing w/ ColdSpring
III.I Service Layers and ColdSpring
ColdSpring was designed to work exceptionally well with a piece of application architecture known as a "service-layer". What this
means is that the functionality comprised within many of the application's components is separated into logical units and each is
abstracted behind a clean interface (interface as in api). This is interface is often called a "service". In some applications you might
have a few components that make up one logical unit of functionality… a DAO to fetch and store object instances in a database,
maybe a gateway for aggregating multiple objects of that same type into recordsets. The idea of a service layer is that you group
that functionality together so that other pieces of the application that depend on those components can speak to them through a
clean, well documented api (the service). You'll do your best to define that api as early as possible, because the less it changes
the easier your life will be. The abstraction a service layer provides also makes it a lot easier to manage your dependencies, which
is where ColdSpring comes in. The diagram below shows the importance of the service layer (which could also be referred to as
your "public API". Not only do "clients" such as web-application controller layers, ajax, and flex depend on the service layer's api,
but also components within your model. This is why having the dependency resolution features of ColdSpring at your disposal
make it easy to provide any component in your application's model with any service api.

ColdSpring Framework 1.0 Documentation

36

Developing w/ ColdSpring

37

Even though CFML provides many rich abstractions of complicated programming tasks as simple tags, it still may be a good idea
to put them behind a service layer. Take CFMAIL, for example. Sure you could sprinkle email notifications throughout an
application by using CFMAIL, but the day requirements change you'll be happier if you put it behind a service (we'll call it our
"NotificationService"). So say that you've been given the chore of making sure that the application sends out SMS messages as
well as emails to anyone who's listed as having SMS. Well, if you used CFMAIL everywhere, you'd now have to go through and
add this functionality, which could end up being a lot of code (and a lot of duplication). Alternatively, if you have a
NotificationService that is used everywhere CFMAIL was supposed to be, you could make your changes in one place and the rest
of the application would never even know about it. The problem is that before your application depended on CFMAIL, which is
simply "available" from anywhere within CFML code. Now we need to provide the same level of ubiquity with our
NotificationService, and that's not as easy. However, with ColdSpring, bringing the NotificationService into a component is an
easy two step process:

1. Provide a way for the NotificationService to be supplied to the component that needs it. This is done by either an argument
to its init method that is named NotificationService and of the same CFC type as the NotificationService, or you provide a
public setNotificationService method, with one argument, with the same name and type just like the constructor argument.

2. Describe the dependency in ColdSpring's bean definition or make sure autowire is set to "byName" or "byType".
Without autowiring, the bean definitions would look like this:

1. Define your NotificationService
<bean id="NotificationService" class="myApp.model.NotificationService"/>

2. Then define your component that needs the NotificationService, and pass in the reference via constructor-arg or
property (property is shown)

<bean id="ComponentThatNeedsNotificationService"
class="myApp.model.ComponentThatNeedsNotificationService">

<property name="NotificationService">
<ref bean="NotificationService"/>

</property>
</bean>

The setter method within "ComponentThatNeedsNotificationService" would look like this:
<cffunction name="setNotificationService" returntype="void" output="false"
hint="Dependency: Notifcation Service">

ColdSpring Framework 1.0 Documentation

38

<cfargument name="NotificationSerivce" type="myApp.model.NotificationService"
required="true"/>

<cfset variables.notificationService = arguments.notificationService/>
</cffunction>
The <cfset variables.notificationService = arguments.notificationService/> line makes sure
"ComponentThatNeedsNotificationService" will retain a reference to the notification service so that it can be used until
overwritten or "ComponentThatNeedsNotificationService" is destroyed. Thus anywhere
"ComponentThatNeedsNotificationService" needs to send a notification it simply says something like:
<cfset variables.notificationService.send(…) /> instead of using <CFMAIL/>, and you can be happy that all Notfications are
passing through one concise component in your application.

III.II ColdSpring and MVC frameworks
ColdSpring was also developed to fit in well with existing MVC (Model View Controller) frameworks, such as Fusebox 4 and Mach-
II. To use ColdSpring with one of these frameworks, it's important to understand the "big picture", as in where ColdSpring sits in
relation to the rest of the application. The following diagram illustrates ColdSpring's relationship in a MVC web application:

Why does the Controller layer need to communicate with ColdSpring? In some cases, it may only be to retrieve objects (beans)
from the ColdSpring bean factory. In others, the Controller may handle setting up and configuring the bean factory. Either way, it's
important to note that once the controller obtains a reference to a bean, it does not communicate "thru" ColdSpring.

Developing w/ ColdSpring

39

For those who use the Mach-II framework for a controller, ColdSpring ships with a Mach-II plugin
(coldspring.machii.coldspringPlugin.cfc) that automates the creation of the bean factory. The following diagram details MachII and
ColdSpring together:

ColdSpring Framework 1.0 Documentation

40

ColdSpring bean factories can be used completely transparently in Mach ii applications via the
coldspring.machii.ColdspringPlugin. The Mach ii plugin handles initialization and storage of the ColdSpring bean factory, as
well as 'auto-matically' wiring up all of your Mach ii plugins, filters, and listeners with any ColdSpring managed components they
may require. All that is necessary is really to define the plugin in the plugins section of your Mach ii config file, preferably as the
first plugin, so it has access to all subsequent plugins for auto-wiring. The plugin also provides relatively fine grained control over
its behavior through configuration parameters.

The following parameters are available:
Parameter Values Description
configFilePropertyName any string The name of the ColdSpring configuration file, defined in the Mach ii

properties section
configFilePathIsRelative true/false Defines whether the file is relative to the application index.cfm file
resolveMachiiDependencies true/false When set to true all Mach II listeners, filters, and plugins will be auto-

wired with ColdSpring managed components, this is the preferred
behavior

placeFactoryInApplicationScope true/false When set to true the ColdSpring bean factory will be placed in
Application scope, under the key defined in localBeanFactoryKey if
it is defined. The bean factory is always added to the propertyManager
in the same key

localBeanFactoryKey any string Defines the key that the bean factory is saved under in the
propertyManager, and possibly Application scope. If this parameter is
not set, the default bean factory key will be used

parentBeanFactoryKey any string When working with sub-apps in Mach II, each application's bean factory
can set a parent's bean factory as it's own parent. If defined, this string
should be the localBeanFactoryKey of the parent you wish to set.

III.III ColdSpring and Remoting
III.III.I Remote Facades

Developing w/ ColdSpring

41

ColdSpring also provides a good foundation for exposing your application model to remote method calls. Currently, the primary
way to do this is to write remote facades, which expose ColdSpring beans to remote calls by containing methods with
access="remote".

There is a good example of a Remote Facade in the "FeedViewer" example application (located within the /examples/ directory
within the ColdSpring distribution).

III.III.II Using AOP to create remote proxies

You can also use ColdSpring's AOP framework to automatically create Remote Facade(s) for your components. As of the 1.0
Release, this approach will only work on CFMX 7 and higher. We are working on support for MX6.1 as well.

ColdSpring Framework 1.0 Documentation

42

To use this functionality, first gain some understanding of ColdSpring's AOP framework. The overall approach is this:

• Define your components normally as <bean/>'s
• Create a new <bean/> using the coldspring.aop.framework.RemoteFactoryBean class.

• In the RemoteFactoryBean's definition, we must define the following properties:
• target, the actual <bean/> we are creating a remote interface cfc for
• serviceName, the name of the resulting remote inteface cfc
• absolutePath, the filesystem location where the remote interface cfc should be placed or relativePath, a

path relative from your webroot
• remoteMethodNames, a matching pattern for which methods in our target component we want to remote

proxy.

A simple example definition would be:

<bean id="someComponent" class="type.of.SomeComponent"/>

<bean id="someComponent_Remote" class="coldspring.aop.framework.RemoteFactoryBean">

<property name="target">
<ref bean="someComponent" />

</property>
<property name="serviceName">

<value>RemoteCatalogService</value>
</property>
<property name="relativePath">

<value>/remote/</value>
</property>
<property name="remoteMethodNames">

<value>get*</value>
</property>

</bean>

In order for this to work, we have to tell our remote proxy to actually create itself, so you can do one of two things.

Developing w/ ColdSpring

43

1) You can call getBean('someComponent_Remote')on the BeanFactory and ColdSpring will create the proxy for you (you would
see a remoteCatalogService.cfc in the /remote/ directory on your server. So you would want to add this call during application
startup.

2) You can use the coldspring.aop.framework.RemoteFactoryBean api to control when the remote proxy is created. First you must
obtain the RemoteFactoryBean itself from ColdSpring, and this is done by preceding the bean name with a "&", meaning,
getBean("&someComponent_Remote") would return your RemoteFactoryBean, which exposes the following api for you to use:

Method Usage
createRemoteProxy() Creates the remote proxy
destroyRemoteProxy() Removes the remote proxy
isConstructed() Returns true/false as to whether the

proxy has been created.

III.III.III Automatic CFC to ActionScript object conversion

ColdSpring also ships with a few utility classes which can be to automatically marshall and unmarshall between CFCs and
ActionScript objects. These classes are the coldspring.remoting.flash.FlashUtilityService and
coldspring.remoting.flash.FlashMappings. The FlashUtilityService uses the FlashMappings component to accomplish this task.
You would configure them like so:

<bean id="flashMappings" class="coldspring.remoting.flash.FlashMappings">

<constructor-arg name="mappings">
<list>

<map>
<entry key="cfcType">

<value>some.type.of.Component</value>
</entry>
<entry key="asType">

<value>some.actionscript.Type</value
</entry>

</map>
</list>

 </constructor-arg>
</bean>

ColdSpring Framework 1.0 Documentation

44

<bean id="flashUtilityService" class="coldspring.remoting.flash.FlashUtilityService">
<property name="flashMappings">

<ref bean="flashMappings"/>
</property>

</bean>

So, you simply provide the mappings as a list of maps (array of structs), each containing both a cfcType and a corresponding
actionScript type. In this case any some.type.of.Component would be converted to the ActionScript some.actionscript.Type class.

You can use the FlashUtilityService by itself, but if you supply a RemoteProxyFactory with it, ColdSpring will automatically use
AOP to apply the flashUtilityService to your remote method calls (see III.III.II Using AOP to create remote proxies):

<bean id="someComponent" class="type.of.SomeComponent"/>

<bean id="someComponent_Remote" class="coldspring.aop.framework.RemoteFactoryBean">

<property name="target">
<ref bean="someComponent" />

</property>
<property name="serviceName">

<value>RemoteCatalogService</value>
</property>
<property name="relativePath">

<value>/remote/</value>
</property>
<property name="remoteMethodNames">

<value>get*</value>
</property>
<property name="flashUtilityService">

<ref bean="flashUtilityService" />
</property>

</bean>

